统计与数据科学藕舫讲坛:特邀南方科技大学史建清教授作学术报告

发布单位:数学与统计学院(公共数学教学部)创建者:贾继红发布时间:2025-04-01浏览量:11

报告题目:Analyzing Functional Data with a Mixture of Covariance Structures Using a Curved-Based Sampling Scheme

报告人:史建清 教授

报告时间:202542日(周三)下午 13:30-14:30

报告地点:藕舫楼724会议室

主持人:曹春正 教授

报告简介:

Motivated by distinct walking patterns in real-world free-living gait data, this paper proposes an innovative curve-based sampling scheme for the analysis of functional data characterized by a mixture of covariance structures. Traditional approaches often fail to adequately capture inherent complexities arising from heterogeneous covariance patterns across distinct subsets of the data. We introduce a unified Bayesian framework that integrates a nonlinear regression function with a continuous-time hidden Markov model, enabling the identification and utilization of varying covariance structures. One of the key contributions is the development of a computationally efficient curve-based sampling scheme for hidden state estimation, addressing the sampling complexities associated with high-dimensional, conditionally dependent data. This talk details the Bayesian inference procedure, examines the asymptotic properties to ensure the structural consistency of the model, and demonstrates its effectiveness through simulated and real-world examples.

报告人简介:

史建清,南方科技大学统计与数据科学系教授,理学院生物医学统计中心主任,英国皇家统计学会会士,科技部十四五重点项目首席科学家。曾任英国国家艾伦图灵研究院图灵研究员,剑桥大学牛顿学院访问研究员,英国纽卡斯尔大学(Newcastle University)统计学教授,纽卡斯尔大学云计算和大数据研究中心副主任。主要研究方向包括函数型数据分析,生物医学统计,缺失数据分析,meta-analysis等。在国际学术刊物上发表高水平学术论文多篇,包括统计和医学顶级期刊 JRSSB, JASA, Biometrika, Nature MedicineBritish Medical Journal。曾任英国皇家统计协会《应用统计》(JRSSC)等国际期刊副主编,Guest AE for JRSS discussion paper。获IEEE康复游戏和健康国际年会最佳论文奖、美国统计协会非参数统计分会年度最佳论文奖。在Chapman & Hall 出版专著:Gaussian Process Regression Analysis for Functional Data

 

欢迎广大师生踊跃参加!

数学与统计学院

江苏省应用数学(南京信息工程大学)中心

江苏省系统建模与数据分析国际合作联合实验室

江苏省统计科学研究基地

202541