报告题目:An efficient and novel computational approach for orthogonal spline collocation method
报告人: 廖锋
报告时间:2024年11月10日(周日)上午11:30-12:30
报告地点:藕舫楼802室
主持人: 王廷春 教授
报告摘要:This report is concerned with the numerical solutions of Schrödinger-Boussinesq (SBq) system by an orthogonal spline collocation (OSC) discretization in space and Crank-Nicolson (CN) type approximation in time.To implement the CN+OSC scheme, then we devise a new computation method based on the orthogonal diagonalization techniques (ODT), which can be realized by FFT and is suitable for parallel computation. In order to compare the performance of ODT with other methods, we devise an alternating direction implicit (ADI) method to compute the CN+OSC scheme for high spatial dimension SBq system. As an alternative implementation, the new method ODT not only exhibits more accurate numerical results, but also demonstrates stronger invariance preserving ability. Numerical results are reported to verify the error estimates and the discrete conservation laws.
报告人简介:廖锋, 2018年毕业于南京航空航天大学取得博士学位,目前就职于常熟理工学院,从事偏微分方程保结构算法的研究,在Appl. Numer. Math., Calcolo, Numer. Algor.等刊物发表学术论文20余篇。
欢迎广大师生踊跃参加!
数学与统计学院
江苏省应用数学(南京信息工程大学)中心
江苏省系统建模与数据分析国际合作联合实验室
2024年11月8日