报告题目:Wrapped Gaussian Process Functional Regression Model for Batch Data on Riemannian Manifold
报告人:史建清 教授
报告时间:2023年3月17日(周五)下午 14:00-15:00
报告地点:藕舫楼629会议室
主持人:曹春正 教授
报告人简介:
史建清,南方科技大学统计与数据科学系教授,生物医学统计中心主任,博士生导师。曾任英国纽卡斯尔大学统计学教授,英国国家艾伦图灵研究院图灵研究员。主要研究方向包括函数型数据分析,生物医学统计,缺失数据分析,Meta-Analysis等。在国际学术刊物上发表高水平学术论文多篇,包括统计顶级期刊JRSSB, JASA,Biometrika和Biostatistics。曾任英国皇家统计协会《应用统计》副主编,Guest AE for JRSS Discussion Paper,英国纽卡斯尔大学云计算和大数据研究培训中心副主任。曾获邀任剑桥大学世界最顶级数学学院之一牛顿学院访问研究员,获美国统计协会非参数统计分会年度最佳论文奖,2012年获英国Welcome Trust Health Innovation Challenge Fund,共计210万英镑。2011年在著名统计学出版社Chapman & Hall 出版专著:Gaussian Process Regression Analysis for Functional Data。
报告简介:
Regression is an essential and fundamental methodology in statistical analysis. The majority of the literature focuses on linear and nonlinear regression in the context of the Euclidean space. However, regression models in non-Euclidean spaces deserve more attention due to collection of increasing volumes of manifold-valued data. In this context, we proposed a concurrent functional regression model for batch data on Riemannian manifolds by estimating both mean structure and covariance structure simultaneously. The response variable is assumed to follow a wrapped Gaussian process distribution. Nonlinear relationships between manifold-valued response variables and multiple Euclidean covariates can be captured by this model in which the covariates can be functional and/or scalar. The performance of our model has been tested on both simulated data and real data, showing it is an effective and efficient tool in conducting functional data regression on Riemannian manifolds.
欢迎广大师生踊跃参加!
数学与统计学院
2023年3月16日